Our students on their teachers...
I look at the amazing things that she has done and her love for her work and it spurs me to push forward | **Inspirational leader and teacher** | He is super smart and does his best to break down concepts for us | Her pushing helped all of us to grow more than we ever would have thought possible | He makes time for students count - extremely intelligent | He knows how to connect with the students | He is very helpful when you are stuck on a problem and will walk you through the subject in an easy to understand way | She is **great to talk to** as a fellow woman in STEM | He finds a way to make the most seemingly complex ideas understandable | He gives me some lifelong advice to help me improve not only my grades but also the ability to become a good engineer | I have never met a professor that is as **passionate** about his areas of expertise | His research is amazing and is inclusive of students from the freshman level to graduate | He gets the best out of his students and really cares for them | She is very helpful when trying to understand a subject | **Awesome!**
Here at Ole Miss, you'll gain the skills to solve many of the world’s problems – with the support and challenge from our teachers and alumni. That could be the technology that powers your home to the fuel, roads and vehicle that get you to work or play. Or the laptop or phone that gives you access to a world of knowledge and fun to the medical advancements that improve your life.

And, you’ll have all sorts of opportunities to develop the leadership, communication and creative-thinking skills needed in today’s competitive world. You’ll be among academic achievers – several of our graduates have gone on to become Rhode Scholars, Fulbright Scholars, Guggenheim Fellows and Goldwater Scholars.

With our internship and co-op program, you can work side by side with seasoned engineers and other professionals on projects that might range from design to manufacturing to sales. You could find your spot, like many of our students, at places such as FedEx, Tesla or NASA.

Your teachers go beyond classroom instruction and tutoring sessions to give you career guidance and connections. Two-thirds of our graduates go into the private sector – taking positions in a wide variety of companies such as Amazon, ExxonMobil, International Paper and Kiewit. One out of every five students chooses to pursue another degree, whether in engineering, med school, law school or an MBA. And, others pursue work in the government or military.

So, check out our website or contact us at engineer@olemiss.edu. We’re sure that you’ll find everything you need to have a great college experience.
Office of the Dean

David Puleo, Ph.D.
Dean
227 Brevard
662-915-7407
dpuleo@olemiss.edu

Cris Surbeck, Ph.D.
Associate Dean
Academic Affairs
47 Brevard
662-915-5473
csurbeck@olemiss.edu

Greg Easson, Ph.D.
Associate Dean
Research
111 Brevard
662-915-5995
geasson@olemiss.edu

Marni R. Kendricks
Assistant Dean
Undergraduate Academics
217 Brevard
662-915-5373
mckendri@olemiss.edu

Tyrus McCarty, Ph.D.
Assistant Dean
Special Initiatives
203 Carrier Hall
662-915-5377
mccarty@olemiss.edu

Ryan Upshaw
Assistant Dean
Student Services
214 Brevard
662-915-7007
rlupshaw@olemiss.edu

Megan Miller
Career Planning Specialist
218 Brevard
662-915-5699
megan2@olemiss.edu

Al D’Jock
Admissions Counselor
236 Brevard
662-915-1849
amdjock@olemiss.edu

Oana Chirila-Najjar
Academic Counselor
204 Brevard
662-915-1983
ocnajjar@olemiss.edu

Isabella Watt
Academic Common Mkt.
202 Brevard
662-915-2952
iwatt@olemiss.edu

Hank Ducey
Assistant to the Dean
227 Brevard
662-915-5780
hanking@olemiss.edu

Christine Hellums
Administrative Secretary II
227 Brevard
662-915-7407
chellums@olemiss.edu

Jeff Hubbard
Network Administrator
104 Carrier Hall
662-915-8988
jahubbar@olemiss.edu

William Panlener
Systems Programmer
104 Carrier Hall
662-915-8988
wepanlen@olemiss.edu

Donald Reed
Computer Technician
104 Carrier Hall
662-915-8988
dreed3@olemiss.edu
Departments

**BIOMEDICAL ENGINEERING**
Chair: Dwight Waddell, Ph.D.
237 Brevard
662-915-2623
waddell@olemiss.edu
Office Contact: Andrew Stapp
345 Brevard
662-915-3126
pastapp@olemiss.edu

**CHEMICAL ENGINEERING**
Chair: Adam Smith, Ph.D.
136 Anderson
662-915-5350
aes@olemiss.edu
Office Contact: Anne Pringle
134 Anderson Hall
662-915-7023
abpringl@olemiss.edu

**CIVIL ENGINEERING**
Chair: Yacoub Najjar, Ph.D.
106 Carrier Hall
662-915-7191
ymnajjar@olemiss.edu
Office Contact: Lynne Trusty
106 Carrier Hall
662-915-7191
lmtrusty@olemiss.edu

**COMPUTER AND INFORMATION SCIENCE**
Chair: Dawn Wilkins, Ph.D.
203 Weir Hall
662-915-7309
dwilkins@cs.olemiss.edu
Office Contact: Jennifer Vaughn
201 Weir Hall
662-915-7396
dep@cs.olemiss.edu

**ELECTRICAL AND COMPUTER ENGINEERING**
Chair: Ramanarayanan Viswanathan, Ph.D.
302 Anderson Hall
662-915-5353
viswa@olemiss.edu
Office Contact: Stefanie Delmastro
302 Anderson Hall
662-915-7231
sdelmast@olemiss.edu

**GENERAL ENGINEERING**
Director: Adam Smith, Ph.D.
136 Anderson
662-915-5350
aes@olemiss.edu
Office Contact: Anne Pringle
134 Anderson Hall
662-915-7023
abpringl@olemiss.edu

**GEOLOGICAL ENGINEERING AND GEOLOGY**
Chair: Gregg R. Davidson, Ph.D.
120 Carrier Hall
662-915-5824
davidson@olemiss.edu
Office Contact: Sherra Jones
120 Carrier Hall
662-915-7498
sdj1@olemiss.edu

**MECHANICAL ENGINEERING**
Chair: A.M. Rajendran, Ph.D.
229A Carrier Hall
662-915-5770
raj@olemiss.edu
Office Contact: Janet McBride
229 Carrier Hall
662-915-7219
jlmcbrid@olemiss.edu
Student Organizations

HONOR SOCIETY & STUDENT BODY
TAU BETA PI
Adviser: Marni R. Kendricks
662-915-5373
mckendri@olemiss.edu

ENGINEERING STUDENT BODY
Adviser: Ryan Upshaw
662-915-7007
rlupshaw@olemiss.edu

CROSS-DISCIPLINE ORGANIZATIONS
ENGINEERS WITHOUT BORDERS
Adviser: Lance Yarbrough, Ph.D.
ldyarbro@olemiss.edu

SOCIETY OF WOMEN ENGINEERS
Adviser: Elizabeth Ervin, Ph.D.
eke@olemiss.edu

NATIONAL SOCIETY OF BLACK ENGINEERS
Adviser: Tyrus McCarty, Ph.D.
mccarty@olemiss.edu

SOCIETY OF AMERICAN MILITARY ENGINEERS
Adviser: Ned Mitchell, Ph.D.
kenneth.n.mitchell@usace.mil

BIOMEDICAL ENGINEERING
BIOMEDICAL ENGINEERING SOCIETY
Advisor: NiKki Reinemann, Ph.D.
662-915-8973
dnreinem@olemiss.edu

CHEMICAL ENGINEERING
AMERICAN INSTITUTE OF CHEMICAL ENGINEERS
Adviser: Brenda Prager, Ph.D.
662-915-2184
bhprager@olemiss.edu

CIVIL ENGINEERING
AMERICAN SOCIETY OF CIVIL ENGINEERING
Adviser: Grace Rushing
662-915-7191
gemcmcahe@olemiss.edu

CHI EPSILON
National Honor Society
Adviser: Cris Surbeck, Ph.D.
662-915-5473
csurbeck@olemiss.edu
Student Organizations

COMPUTER AND INFORMATION SCIENCE

ASSOCIATION FOR COMPUTING MACHINERY
Adviser: Charlie Walter, Ph.D.
cwwalter@olemiss.edu

UPSIOLON PI EPSILON
National Honor Society
Adviser: Joseph Carlisle
662-915-7784
ejcarlis1@olemiss.edu

ELECTRICAL AND COMPUTER ENGINEERING

INSTITUTE OF ELECTRICAL & ELECTRONIC ENGINEERS
Adviser: Paul Goggans, Ph.D.
662-915-5379
goggans@olemiss.edu

ETA KAPPA NU
National Honor Society
Adviser: W. Elliot Hutchcraft, Ph.D.
662-915-6934
eewe@olemiss.edu

GEOLOGY & GEOLOGICAL ENGINEERING

AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS
Adviser: Louis Zachos, Ph.D.
662-915-8827
lgzachos@olemiss.edu

SIGMA GAMMA EPSILON
National Honor Society
Adviser: Jennifer Gifford Ph.D.
662-915-2079
jngiffor@olemiss.edu

MECHANICAL ENGINEERING

AMERICAN SOCIETY OF MECHANICAL ENGINEERS
Adviser: P.R. Mantena, Ph.D.
662-915-5990
meprm@olemiss.edu

SOCIETY OF AUTOMOTIVE ENGINEERS
Adviser: T. Pandya, Ph.D.
662-915-5378
tspandya@olemiss.edu
Advising

You'll have academic advisory support every step of the way – from your freshman year to graduation.

As part of orientation, we'll give you help in registering for your first classes at Ole Miss. Throughout the rest of your freshman year, the Center for Student Success and First Year Experience will provide academic advising and the necessary resources.

Each semester, you meet with a department advisor to help schedule your courses and discuss your longer-term plans. You should review the course advising sheet for your degree before meeting your advisor. That way, you’ll have an idea what courses you should take the following semester.

You can find out who your advisor is in myOleMiss. Just click on Academics in the top row of links, then select Advisors which will lead to the My Advisors option. If you have questions about this or if an advisor’s name is not listed following orientation, please contact your department secretary.

Find the course requirements for your major at engineering.olemiss.edu/advising

Tutoring

Engineering requires work, ingenuity, passion and persistence. Ole Miss wants you to succeed: our tutors can help you better understand core engineering topics.

Tutoring is available for a variety of STEM subjects. Free help sessions and individual paid tutoring are offered through the program.

Read more about our program at engineering.olemiss.edu/tutor

Contact information - for tutoring and advisory services

Oana Chirila-Najjar
Academic Counselor
204 Brevard
662-915-1983
ocnajjar@olemiss.edu
Co-ops

Cooperative education, or co-op, provides you with the unique opportunity of working in a professional capacity for several months during your time as an undergraduate student. You are well compensated for your work and you gain relevant engineering experience to add to your resume.

With a co-op, you will take a semester (or more) off from classes and typically work full time for at least 16 weeks. This will be the equivalent to a full academic load. The enrolled co-op student is considered full-time for insurance purposes and the deferment of loan repayment.

Check out engineering.olemiss.edu/co-op

Career Support

Ole Miss Engineering will help you connect with the 100-plus employers who look to Ole Miss to employ engineering and computer science students for their full-time positions, co-ops and internships. That could be through our bi-annual career fairs, company info sessions and hands-on events.

To prepare for a job, you can take advantage of our wide range of workshops. They cover everything from resume writing to interview skills to networking strategies. And, with our senior course on leadership skills, you’ll get guidance from business, academic and military professionals on how to deal with real-world work situations.

And, we’ll keep you up to date with the kind of jobs that might be right for you through our private LinkedIn group and tailored email notifications.

Find out more at engineering.olemiss.edu/career

Contact information - for co-ops and careers

Megan Miller
Career Planning Specialist
218 Brevard
662-915-5699
megan2@olemiss.edu
Academic Requirements

ADMISSIONS REQUIREMENTS
You must be admitted to the University of Mississippi and meet certain academic requirements to be admitted into the School of Engineering.

To be admitted into all engineering degrees programs except General Engineering, a student must have earned:

- a 25 or higher on the Math portion of the ACT (or SAT equivalent or a C or higher on the Cambridge O-Level Examination) AND
- a core high school GPA of 3.0 or higher.

To be admitted into General Engineering, a student must have earned:

- a 20 or higher on the Math portion of the ACT (or SAT equivalent or a C or higher on the Cambridge O-Level Examination) AND
- a core high school GPA of 2.8 or higher.

Students with a score below 25 on the Math portion of the ACT must enroll in MATH 125 (or MATH 121 and 123) and earn a grade of B or higher.

DEGREE REQUIREMENTS
Find out the course requirements for your major at engineering.olemiss.edu/advising

Dual Enrollment / IB Credit / AP Credit
The School of Engineering recognizes credit earned by dual enrollment, International Baccalaureate and advanced placement courses in accordance with The University of Mississippi undergraduate catalog.

Social Sciences, Humanities & Fine Arts
The School of Engineering requires 18 hours of SS/H/FA courses.

- 6 credit hours in social/behavior sciences.
- 9 credit hours in humanities and fine arts (with at least 3 hours in each).
- 3 additional credit hours in humanities, social/behavioral science or general education as defined by individual engineering departments.
- Chemical engineering majors are required to complete 6 hours of serial work in the humanities, 6 hours of serial work in the social sciences, 3 hours of fine arts, and 3 additional hours of social sciences or humanities.
- Computer science majors are required to complete 3 hours of sophomore literature (ENGL 221-226) plus 15 hours to satisfy the SS/H/FA requirement.
- General engineering majors must complete 3 additional credit hours of SS/H/FA course work.
Honors College
Honors 101 and 102 can be used to satisfy the First-Year Writing requirement. Or, a student may apply the credits toward humanities or social science hours.

Minor
The School of Engineering recognizes, but does not require, a minor course of study in a department different from the major. A minor field may be any discipline that offers a minor at the University of Mississippi, except for:
- chemistry for chemical engineering students
- geology for geological engineering students
- computer science for computer engineering students

A minor typically consists of 18 hours, with the required courses outlined in the university undergraduate catalog. No more than 8 credit hours cited specifically by course number and title as a requirement for an engineering degree may be used toward fulfillment of the minor requirements.

GRADUATION REQUIREMENTS
The School of Engineering requires, as a minimum, a 2.00 grade point average:
- for all courses taken at Ole Miss.
- for all college work attempted at all institutions.
- for School of Engineering course work.

The GPA is total quality points divided by hours attempted. Total quality points are calculated by multiplying credit hours by points earned for each class.

<table>
<thead>
<tr>
<th>Points by grade</th>
<th>ENGR 100 3-hr credits A</th>
<th>WRIT 101 3-hr credits A</th>
<th>MATH 261 3-hr credits B</th>
<th>CHEM 105 3-hr credits B</th>
<th>CHEM 115 1-hr credits D</th>
<th>HIS 105 3-hr credits F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4 points</td>
<td>4 points</td>
<td>3 points</td>
<td>3 points</td>
<td>3 points</td>
<td>2 points</td>
</tr>
<tr>
<td>A-</td>
<td>3.7 points</td>
<td>3.7 points</td>
<td>3 points</td>
<td>3 points</td>
<td>1 point</td>
<td>1 point</td>
</tr>
<tr>
<td>B+</td>
<td>3.3 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-</td>
<td>2.7 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>2.3 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>1.7 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1 point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example
Total quality points:
\[(3 \times 4) + (3 \times 4) + (3 \times 3) + (3 \times 3) + (1 \times 1) + (3 \times 0) = 43\]
Credit hours attempted:
16
GPA calculation:
\[\frac{43 \text{ quality points}}{16 \text{ hours}} = 2.68\]
General Engineering

- Pre-Med
- Business
- Manufacturing
- Military Science
- Naval Science
- Aerospace Studies
- Education
- Accountancy
- 3+3 Accelerated Pre-Law

A general engineering background provides you with an understanding of the core math, scientific and technical principles needed for engineering. You’ll learn about problem-solving, as well as gain teamwork, leadership and communications skills.

With a bachelor degree in engineering, you’ll be equipped for many engineering – and non-engineering – career paths. This could be as a project engineer, medical doctor, lawyer, military, business person and many other opportunities.

What you’ll find at Ole Miss
In general engineering, you will get:

- **Strong foundation** – in your first year, you’ll learn about the various engineering directions offered at Ole Miss as well as have a refresher on math and study skills.

- **Tailored program** – you can choose an emphasis in business, manufacturing, pre-law, pre-med, ROTC studies and secondary education – or one designed around your career interests.

- **Opportunity to change to another engineering department** – you can switch to a more specialized degree if you meet the academic requirements.

Visit engineering.olemiss.edu/

Adam Smith, Ph.D., Associate Professor
Academic Program Director
aes@olemiss.edu
136 Anderson
# Biomedical Engineering

- Biomedical Electronics
- Biomechatronics
- Bioinstrumentation
- Biomaterials
- Biomechanics
- Bionics
- Cellular, Tissue & Genetic Engineering
- Clinical Engineering
- Medical Imaging
- Orthopaedic Bioengineering
- Rehabilitation Engineering
- Systems Physiology
- Neural Engineering
- Computational Modeling

Biomedical engineers combine the design and problem-solving skills of engineering with medical and biological sciences to advance healthcare treatment. They do a lot of different things that fall under the umbrella of biomedicine – everything from creating new medical devices to developing next-generation pharmaceuticals.

With a degree in biomedical engineering, you can pursue a job in the biomedical industry or graduate studies in the field. Also, you’ll be well-placed to seek a professional career in medicine, dentistry, pharmacy or patent law.

**What you’ll find at Ole Miss**

You can choose one of three academic tracks in our biomedical engineering program:

- **Biomolecular engineering** – brings together the study of molecular biology, biophysics and chemical engineering to modify or create new molecules. This can lead you to a job working on innovative drugs and medical processes, as well as new foods and fuels.

- **Biomedical systems** – provides you with an understanding of medical instrumentation, devices and biomechanics. You’ll also learn about using technology and other tools to better understand a person’s health.

- **Bioinformatics** – applies big data analytics to genome sequencing, medical imaging and large data management.

Visit [biomedical.olemiss.edu](http://biomedical.olemiss.edu)
Chemical Engineering

Chemical engineers use chemistry, mathematics, physics and engineering principles to discover solutions to real-world challenges in petrochemicals, pharmaceuticals, food, personal care products and in many other industries.

With a chemical engineering degree, you will be ready to pursue careers in manufacturing, petrochemicals, oil and gas, biotechnology, the environmental field and more. Your degree can also pave the way to top graduate programs in medicine, business, law and advanced engineering fields.

What you'll find at Ole Miss
You can choose the standard track, pre-med track or one of the following emphases:

- **Biotechnology** – this includes the study and use of biological processes to make advancements in fields as diverse as drugs, agriculture and food.
- **Environmental** – this will give you the foundation to work in environmental areas, such as waste and pollution reduction.
- **Manufacturing** – you’ll learn the skills to improve processes and productivity in advanced manufacturing environments.
- **Materials** – you’ll delve into the world of advanced materials – such as polymers and nanomaterials – that can handle extreme conditions.

Visit [chemical.olemiss.edu](chemical.olemiss.edu)

Adam Smith, Ph.D., Associate Professor
Department Chair
aes@olemiss.edu
136 Anderson
Civil Engineering

Civil engineers use scientific knowledge and hands-on creativity to solve 21st-century problems: designing for sustainability, safely constructing the built environment, maintaining our aging infrastructure systems, and providing service worldwide to people in great need.

With a civil engineering degree, you could be involved in the design, construction or operation of many critical facilities. This could be anything from highways to high-rise buildings, from bridges to hospitals and airports – just to name a few.

**What you’ll find at Ole Miss**

You’ll receive the foundation for practice and advanced study in four focus areas:

- **Geotechnical engineering** – looking at the mechanics of minerals, rocks, soil and water to determine what’s required for man-made structures built on or around them.

- **Structural engineering** – making sure structures are designed and built to be safe and resilient to environmental stresses.

- **Transportation and construction management** – using engineering skills to oversee transportation and other large projects, in terms of schedule, cost, safety, quality, function and scope.

- **Water resources and environmental engineering** – creating solutions to environmental problems such as waste and pollution, and ensuring access to clean water for human use.

Visit [civil.olemiss.edu](http://civil.olemiss.edu)

Yacoub Najjar, Ph.D., Professor
Department Chair
ymnajjar@olemiss.edu
106 Carrier Hall
Computer and Information Science

Computer scientists work in almost every industry because computing is the glue that holds much of contemporary science, technology, commerce and entertainment together.

With a computer science degree, you can pursue a wide spectrum of roles – you could develop software, applications or websites. You could design, maintain or protect computer systems. Or you could focus on data – how to store, organize and derive value from it.

What you’ll find at Ole Miss
You’ll be able to take advantage of:

- **Degree choice** – with the more specialized Bachelor of Science degree, you’ll take additional mathematics, science and computing courses. With a Bachelor of Arts, you get the core computer science principles and the flexibility to take courses compatible with a liberal arts degree.

- **New or enhanced courses** – you’ll keep up with innovations in cybersecurity, virtual reality, artificial intelligence, graphics, game development, web and mobile app development and more. You can even choose to pursue a degree emphasis in computer security or data science if you’re undertaking a B.S.

- **Community and competition** – you can take part in our programming competitions, hackathons, esports activities and join our student chapter of the Association of Computing Machinery.

Visit [cs.olemiss.edu](http://cs.olemiss.edu)

Dawn Wilkins, Ph.D., Professor
Department Chair
dwilkins@cs.olemiss.edu
201 Weir Hall
Electrical and Computer Engineering

- Computer Engineering
- Robotics
- Utility Companies
- Radar Systems
- Manufacturing
- Aerospace
- Biomedical
- Electronic Chip Design
- Telecommunications
- Automotive
- RF/Wireless

Electrical engineers use the physics and mathematics of electricity, electromagnetism and electronics to create, develop and test electrical equipment and systems. They work in areas as diverse as the automotive, chemical and petroleum industries; power utilities; defense and aeronautics; and telecommunications and computers.

Computer engineers build computing devices – everything from personal computers and supercomputers to systems in cell phones, household appliances and transportation. They can work with emerging technologies such as self-driving automobiles, 5G wireless and artificial intelligence.

What you’ll find at Ole Miss
We are a tight-knit department, so you’ll enjoy:

- **Strong faculty interaction** – with only 12 students for every professor in our upper-level classes.
- **Research opportunities** – you can work with our faculty and graduate students on research areas such as electromagnetics and communications.
- **Access to innovation** – we are a partner institution in the Broadband Wireless Access and Applications Center, sponsored by the National Science Foundation.
- **Leading-edge software** – through our Cadence University membership, you have access to the tools and methodologies central to the development of microelectronic systems.

Visit [electrical.olemiss.edu](http://electrical.olemiss.edu)

Ramanarayanan “Vish” Viswanathan, Ph.D., Professor
Department Chair
viswa@olemiss.edu
302 Anderson Hall
Geology & Geological Engineering

- Natural Hazard Mitigation
- Mapping & Resource Assessment
- Geotechnical Engineering
- Mining/Oil & Gas
- Inspector/Construction Projects
- Oceanography/Marine Geological Studies
- Research Scientist
- Secondary Teacher or Professor
- Environmental Law
- Water Quality & Supply

Geologists study the earth – its history, its composition and processes, as well as potential hazards such as earthquakes, volcanos, landslides and climate change.

Geological engineers consider the engineering properties of natural soils and rock for building and protecting foundations, dams, levees and tunnels. They also work to reverse the environmental impacts of human activities in fields such as groundwater remediation and mine reclamation.

With these degrees, you can find a job in energy, mining, environmental consulting, government research and regulation. And, you’ll likely find yourself spending part of your workday outdoors – in swamps, mountains, forests, desert plains and out at sea.

What you’ll find at Ole Miss
There is a great atmosphere among our students, thanks to:

- **Field trips** – several geology classes incorporate local excursions, as well as summer field camps in Oklahoma and New Mexico.
- **Student comradery** – small classes and an active student-professional organization help create life-long relationships.
- **Opportunities outside of class** – you can participate in undergrad research and our Engineering without Borders projects abroad.

Visit [gge.olemiss.edu](http://gge.olemiss.edu)

Gregg R. Davidson, Ph.D., Professor
Department Chair
davidson@olemiss.edu
120 Carrier Hall
Mechanical Engineering

- Automotive
- Aerospace
- Manufacturing
- Biomedical
- Nanotechnology
- National Defense
- Product Design
- Robotics
- Technology

Mechanical engineers design cars and aircraft, build robots used in manufacturing, research new ways of producing energy, design biologically inspired engineering systems and manipulate nanomaterials to make structures stronger.

With a mechanical engineering degree, you can work in almost any industry. That could be automotive, aerospace, construction, manufacturing, energy production and conservation, environmental and other fields. Or you could pursue a career in law, medicine and finance.

What you’ll find at Ole Miss
With our mechanical engineering program, you’ll have access to:

- **Wide-ranging courses** – you’ll learn about thermodynamics, fluid mechanics, heat transfer, materials, design, mechatronics, robotics, laboratory diagnostics and more.
- **State-of-the-art computer laboratories** in our newly constructed and renovated space.
- **Engaged students** – who participate, and win, design competitions sponsored by the American Society of Mechanical Engineers.
- **Undergraduate research** – you can pursue work in your area of interest, leading towards publication and conference presentations.

Visit [mechanical.olemiss.edu](http://mechanical.olemiss.edu)

A.M. “Raj” Rajendran, Ph.D., Professor
Department Chair
raj@olemiss.edu
229 Carrier Hall
Popular Courses

These are some of the courses that fulfill the SS/H/FA requirements for a degree from the School of Engineering.

**SOCIAL SCIENCE**

This includes courses taken in these departments: Anthropology, Economics, Political Science, Psychology and Sociology.

- ANTH 101  Introductory Cultural Anthropology
- ANTH 102  Intro Archaeology and Bio Anthropology
- ECON 202  Principles of Microeconomics
- ECON 203  Principles of Macroeconomics
- POL 101  Intro to American Politics
- POL 102  Intro to Comparative Politics
- POL 103  Intro to International Relations
- PSY 201  General Psychology
- SOC 101  Introductory Sociology I

**HUMANITIES**

This includes courses taken in these departments: English Literature, History, Classics, Philosophy, Religion, Southern Studies, Gender Studies, African American Studies, Greek, Latin and Modern Languages.

- ENG 221  Survey of World Literature to 1650
- ENG 222  Survey of World Literature since 1650
- ENG 223  Survey of American Literature to the Civil War
- ENG 224  Survey of American Literature since the Civil War
- ENG 225  Survey of British Literature from the Beginning - 18th Century
- ENG 226  Survey of British Literature from the Romantic Period to the Present
- HST 120  History of Europe to 1648
- HST 121  History of Europe since 1648
- HST 130  The United States to 1877
- HST 131  The United States since 1877
- CLC 101  Introduction to Greek Civilization
- CLC 102  Introduction to Roman Civilization
- CLC 103  Women in Antiquity
- CLC 104  Sports in the Ancient World
- CLC 106  Classical Mythology
Popular Courses

HUMANITIES (continued)

PHIL 101  Introduction to Philosophy
PHIL 102  Introduction to Professional Ethics
PHIL 103  Logic: Critical Thinking
REL 101  Introduction to Religion
REL 102  Introduction to Asian Religions
REL 103  Introduction to Judaism, Christianity and Islam
S ST 101  Introduction to Southern Studies I
S ST 102  Introduction to Southern Studies II
G ST 201  Introduction to Gender Studies
A AS 107  Introduction to African History
A AS 201  African American Experience
GR 101  Introduction to Greek I
GR 102  Introduction to Greek II
GR 201  Intermediate Greek I
GR 202  Intermediate Greek II
LAT 101  Introduction to Latin I
LAT 102  Introduction to Latin II
LAT 201  Intermediate Latin I
LAT 202  Intermediate Latin II
*ALL  Modern Languages

FINE ARTS

This includes lecture-based courses taken in the history, appreciation and theory of art, dance, music and theatre arts. Studio type courses such as band, acting, dance, drawing, etc. are not applicable for an engineering degree.

AH 101  Introduction to Western Art
AH 102  Introduction to Non-Western Art
AH 201  History of Art I
AH 202  History of Art II
MUS 101  Introduction to Music Literature
MUS 102  Fundamentals of Music Theory
MUS 103  Introduction to Music
MUS 104  Intro to World Music Cultures
THEA 201  Appreciation of the Theatre
DANC 200  Appreciation of Dance

(continued on next page)
Popular Courses

GENERAL EDUCATION

This includes select courses in military leadership, chancellor’s leadership, business and speech.

AS 301  Air Force Leadership Studies I
AS 302  Air Force Leadership Studies II
BUS 250  Legal Environment of Business
BUS 271  Business Communications
EDLD 110  Chancellor’s Leadership Class I
EDLD 111  Chancellor’s Leadership Class II
EDLD 120  Introduction to Leadership Studies
EDLD 220  Foundations of Leadership Studies
ENGR 390  Professional Communication for Engineers
ENGR 400  Leadership Professionalism in Engineering
MGMT 371  Principles of Management
GB 370  Entrepreneurship and Management
MSL 102  Basic Leadership & Management
NSC 211  Naval Leadership and Management I
SPCH 102  Fundamentals of Public Speaking
SPCH 105  Business and Professional Speech